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A number of problems in source coding deal with a pair of correlated

discrete memoryless sources and two separate non-cooperating encoders, such

as the Slepian-Wolf problem, the side-information problem, and the Wyner-Ziv

problem. In these problems it is desired to determine rate pairs which allow

the outputs of each of two sources to be reproduced at the decoder with some

specified distortion. If the joint distribution of the outputs of the two

sources is completely known to both encoders, then solutions to these

problems are available in the literature. Here the situation in which the

joint distribution is not completely known is considered.

The work was supported by the National Science Foundation under Grant

ENG75-20864 and by the Joint Services Electronics Program under Contract

N00014-79-C-0424.



ACKNOWLEDGEMENTS

The author is grateful to Professor M. B. Pursley for his advice

and assistance throughout the preparation of this thesis.

Thanks are also due to Mrs. Phyllis Young and Ms. Christine Cox

for their expert typing.

I'i

Ii



iv

TABLE OF CONTENTS

CHAPTER Page

1 INTRODUCTION ................................................ 1

2 PRELIMINARIES ............................................... 5

3 ROBUST CODING FOR THE CORNER POINT OF THE
SLEPIAN-WOLF REGION .......................................... 9

3.1 Statement of Problem and Preliminary Result ............ 9
3.2 Positive Coding Theorem ................................ 11
3.3 Converse to Coding Theorem ............................. 14

4 ROBUST CODING FOR THE SIDE INFORMATION PROBLEM .............. 16

4.1 Statement of Problem and Result ........................ 16
4.2 Positive Coding Theorem ................................ 19
4.3 Converse to Coding Theorem ............................. 22

5 THE WYNER-ZIV PROBLEM ....................................... 23

5.1 Introduction ........................................... 23
5.2 Counter Example for Robust Coding ...................... 26
5.3 Special Case where Robust Coding is Possible ........... 31
5.4 Note on Evaluation of the Wyner-Ziv Rate Region ........ 32

6 ROBUST CODING FOR THE SLEPIAN-WOLF PROBLEM .................. 35

6.1 Statement of Problem ................................... 35
6.2 An Outer Bound on the Achievable Rate Region ........... 35
6.3 Some Sets of Achievable Rates .......................... 36

7 CONCLUSION .................................................. 43

APPENDIX A

MODIFICATIONS NECESSARY FOR THE PROOFS OF CHAPTERS 3 AND 4
WITHOUT THE ASSUMPTION OF KNOWN MARGINALS ................... 45

APPENDIX B

PROOF OF THE COUNTER EXAMPLE FOR THE WYNER-ZIV PROBLEM ...... 49

REFERENCES ...................................................... 51

I



1

CHAPTER 1

INTRODUCTION

A number of problems in source coding deal with a pair of correlated

discrete memoryless sources and two separate non-cooperating encoders as

in Fig. 1. Among these are the Slepian-Wolf problem [11, the side-

information problem [2], [31, and the Wyner-Ziv problem [4]. The general

goal of these problems is to determine rate pairs (R1 ,R2 ) which allow the

outputs of each of two sources to be reproduced at the decoder with some

specified distortion. The rate R i is the rate of transmission of informa-

tion from the i-th source encoder to the decoder. If the joint distribution

p, where p(u,v) = P(X (1) = u, X( 2 ) = v), is completely known to both

encoders, then solutions to these problems are known. Here we consider

A these problems assuming only that the joint distribution is known to be in

some class A.

For problems with only a single source, universal codes are source

codes which achieve some performance measure (e.g., the entropy or

the rate-distortion function) asymptotically for all distributions in some

class [12). For the Slepian-Wolf and side-information problems, where

decoding with arbitrarily low distortion is required, universal coding is

not possible in general. This can be seen as follows. Let the marginal

distribution for X(i) be denoted by pi. The rate pair for any code depends

only on the marginal distributions. Thus, for a given code only a single

rate pair (R1 ,R2 ) is possible for any set of joint distributions which

Note that since X ) and X (2 ) (the random variables representing the
source outputs) are discrete, all of the distributions here are
probability mass functions.

-- ---
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Figure 1. Encoder-decoder configuration.
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have the same marginal distributions p1 and p2. The encoders cannot

distinguish between different joint distributions which have the same

marginals, since each encoder observes the output of only one of the two

sources. So if the true joint distribution is n then all p E A such that

Pi = ni' (i = 1,2) remain as possible distributions as far as the source

encoders are concerned even if the marginals Tr1 and T2 are known exactly.

However, a single rate pair (R,,R2 ) must be used for all of them. Therefore,

universal coding is possible only if those p E A with the same marginals

also have the same achievable rate regions.

For the Wyner-Ziv problem the same reasoning shows that a single rate

pair must correspond to each set of p E A with a given pair (plp 2) of

marginal distributions. However, a code may still be universal if it

achieves the optimum distortion for each such p. Universal fixed-rate

codes for single sources do exist if some positive distortion is allowed

[131.

If a code for a class of sources achieves a point (R,D) on the rate

distortion curve for one source in the class and yields rate not greater

than R and distortion not greater than D for all other sources in the

class, it will be called a robust code [14]. Here we show that robust

codes do exist for the Slepian-Wolf and side-information problems. For

the Wyner-Ziv problem an example is given showing that robust coding is

not possible in general (so universal coding is not possible either).
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Suppose that the true distribution is given by p. Then the i-th

encoder can only reduce A to a subset Ai(pi) = (Tr E A: TTi = Pi], which is

the set of distributions with the same i-th marginal as p. In the cases

where robust coding is possible, optimal performance will be achieved by

having the i-th encoder estimate pi and then do robust coding for Ai(P i

The sets A 1 (pl) and A2 (P2 ) may be different, so the choice of rates for

this coding is not simple in general. In the side-information p 'blem

only A 1 (pl) is used, and hence a coding technique which gives o mal

performance is easily obtained. This is not the case with the F 'ian-

Wolf problem. A non-computable characterization of the set of ." able

rate pairs for this problem is given in [71 and can be described as

follows. Let 1 and1 P 2 be the spaces of possible marginals for X( I ) and

X( 2 ) respectively. A rate pair (RI,R2 ) is achievable for a given ( i, 2)

if there exist functions fI: ]PI- [0,) and f 2 :]P 2 - [0,-) such that

Ri = fi(rri) and also such that for all p E A the rate pair (f 1 (pl),f2(p2))

is in the Slepian-Wolf region for the pair of sources with joint distribu-

tion p. In Chapter 6 an upper bound to the set of achievable rate pairs

is given, and a number of such functions f and f2 which yield sets of

achievable rate pairs are considered.

By way of introduction a special case of the Slepian-Wolf problem

(which is also a special case of the side-information problem) is considered

in Chapter 3. The robust coding result for the side-information case is

derived in Chapter 4. Chapter 5 concerns the Wyner-Ziv problem. Here an

example is given which proves that robust coding is not possible in general,

and a special case is presented where robust coding is possible.
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CHAPTER 2

PRELIMINARIES

An encoder may make an estimate of its marginal distribution (which is

with high probability within a prescribed accuracy) by observing the

relative frequency of source letter outputs during some initial estimation

time. Similarly if the encoders send information at rate R. equal to the

entropy of the i-th source (i = 1,2) for some initial time, the decoder

can estimate the joint distribution. The arbitrarily small uncertainties

in these estimates have no effect on the achievable rate regions if the

class A is assumed to be closed. Hence, in the body of the thesis it is

assumed that the marginal distribution for the i-th source is known to i-th

encoder (i = 1,2) and the joint distribution is known to the decoder. In

addition it is assumed that for some n > 0, T(u,v) ;>  for all

(u,v) E XG) X x (2) and all Tr E A. The results needed to prove the

coding theorems without these assumptions are derived in Appendix A.

The alphabet for the i-th source is denoted by X. which is a finite1

set with IZJ elements. The output of the i-th source at time k is a random

variable denoted Xii) with marginal distribution Pi; i.e., P(xr% = U) = pi(U)

for u E Z.. The random variables (X(1) X(2)) have joint distribution p
I xk ' k )aejitdsrbto

and are independent of (X(,X.2) ) for j # k. Define X(i ) to be a sequence
eJu

of n outputs from the i-th source (X~i),...,X(i)- , and let Xn be the set of

all n-sequences whose components are elements of Xi" A blocklength n code

Zn -£ 1,2 ig I ]  Tert ti
for the i-th source is a function g. X The rate of this

code is given by

R. = log 1gi .
R n
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(Base two logarithms are used throughout.) The decoder is defined by a

function

f X1,...,lglIt x e1,...,lg2 iJ - x

where Xi is the reproduction alphabet for the i-th source. Thus the decoder

output which corresponds to the source output vectors (X(),X (2 ) is

.( 1),..(2) (2,(2)) .
X _ ) A f[gl(_x(1)),g2(_ .

The distortion achieved by a code is

( d Q(( ) ,._ -i M() Z n d( i ) .^(i).

j=l z .

the expected per letter distortion between X(i) and _ computed using a

single letter distortion measure d.(.,.) defined on Z. x Z." A rate pair

(RI,R2 ) will be called achievable if for all positive C and 6, codes of rates

R' < R. + e exist for which EdQ) < D. + 6 where D is the specified

distortion level for the i-th source. The set of all achievable rate pairs

will be called the achievable rate region.

Let x(i) denote the n-vector (x( ) , . . . ,x(i)) where x(i) E X. for 1 S j S: n,

and define N(u;x(i)) to be the number of occurrances of the letter u in the

sequence x(i ) . A sequence x(i) is called 8-typical if

ln'N(u;x2i())-pi(U)l < 6 i I  (i)

for all u E i 6 > 0. The set of 8-typical x(i) sequences will be denoted

Tn(6,Pi). The set T( 8 ,pi) has the following properties which are proved in

(5] and [11].

Property 1. For any 6 > 0, P[IX(i) E T n(8,pi)] -1 as n - uniformly on A.
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Property 2. exP2 [nQK(pi)-c)] < lTn(6pi)I < exp2 [n(C(pL)+c)1]

where

-- 6 lo It -5 E log (u) -

uEZi

and

x(pi) -. Pi(u)log Pi(u)

2a

(Here exp2 (a) - 2  for any real number a.)

Similarly define N(u,v;x (1)x (2)to be the number of indices j such

that (uv) (x (2) X(i) being the components of x ( i )

Then call x( ) and x(2 ) jointly 6-typical if

InIN(u,v;x(1) x(2)) - p(u,v), < z1 11 z2 I- 1 (2)
J

forall(u~) E xZ(1) (2)for all (u,v) E X 1 x2 where p is the joint distribution of X and X

(1) (2)
The set of jointly 6-typical (x(,x 2 ) will be denoted Jn(6,p). Note

that

((1),x ( 2 ) )  E J n(6,p) - x ( i ) E T n(6,Pi)

If the pair of random vectors A(1),X(2)) is considered a single

vector of independent random variables X .,(x 1 ,x n
2 ))

each with distribution p, then the defining inequality (i) for 6-typical is

equivalent to inequality (2). Thus directly from the properties of

Tn (6 ,p i ) we have

n - - - - -
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P(l),x(2)) E J (6,p)] -' . as n-

and

exP 2[nQC(p)-c)] < IJ n (,p)l < exP 2[n C(p)+c ) ]

where 4(p) is the joint entropy of X and X

For the Slepian-Wolf and side information problems we define a robust

code as follows. Let R(n) denote the set of boundary points of the

achievable rate region for the case in which the joint distribution TT is

known to both encoders and let Ri(n,p) be the rate of a code of block-

length n for the i-th encoder when the source distribution is p. A

sequence of codes of increasing blocklength n for a class of sources A is

robust if the codes achieve zero distortion uniformly as n -' for all

sources inA and if for some rEA the rate pairs (Rl(n,p),R2 (n,p)) (which

may be a function of p the true source distribution) satisfy

R.(n,p) < Ri + C i--1,2,

for all pEA and nZN, where e 0 as N-- and is independent of p and

(R*,R2 )'E1(7). So a sequence of codes is robust if it achieves asymptotically

zero distortion for all sources in the class.

To modify this definition for the Wyner-Ziv problem let R(D) be the

Wyner-Ziv rate distortion function for source rr. Then call a sequence of

blocklength n codes robust if the rate R(n,rr) and distortion D(n,7) con-

verge to a point on R (D) for some source TEA and if R,(n,) Rl(n, )

and D(n,O)-D(n,rt) for all ;EA.

- ------
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CHAPTER 3

ROBUST CODING FOR THE CORNER POINT OF THE SLEPIAN-WOLF REGION

3.1 Statement of Problem and Preliminary Result

The Slepian-Wolf problem is to determine the set of rate pairs (R1 ,R2 )

which allow the outputs of both sources to be reproduced at the decoder with
arbitrarily low distortion. In this problem Z Z and the distortion

arthsr yi ip

measure is the Hamming distortion measure (i.e., di(u,u) = 0, di(u,v) = 1

if u # v), so arbitrarily low probability of decoding error corresponds to

arbitrarily low distortion. Here we derive a robust coding result for the

special case where R2 > C(p 2 ). Since R2 > 
3C(p2 ) the decoder may be assumed

to know C (2) ) exactly, and the problem becomes the determination of the set

of rates RI which allow to be recovered with arbitrarily low distor-

tion. This is the corner point of the Slepian-Wolf region (see Fig. 2).

Notice that an increase in R2 above 3C(p 2 ) does not permit a decrease in RI .

The joint distribution is known to be in some class A. In addition the

encoder knows the marginal pl, and the decoder knows the true joint distribu-

tion p. However, the encoder does not know the joint distribution p nor the

marginal p2. In this case R1 is achievable if and only if

R supthi(TT) : T E Al(pl)3 (3)

where A1 (p1 ) D [Tr E A : Ti= Pi3 as before, and h1 (TT) is the average

conditional entropy given by

TT(u'v)
hl(TT) T -Z Z t(u,v)log Z (uv) (4)

u v
u

.. . . .. . . . . . . .. . . i f t : . . . . . . . . .. . .. .111 . ..u1 11 vI I . . .I I I I I I . . . . . . . . . .
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Notice that for any distribution p on 1 x 2$

h1 (P) = 3C(p) - - 1 p(uv)log P2 (v)
u v

= 3C(p) - 3C(p 2 ) (5)

3.2 Positive Coding Theorem

Define

h1 (pl) A supth l (TT) : y E Al(pl)) (6)

The proof of the positive coding theorem follows directly from that of

Berger [5, Theorem 3.2], simply substituting h1 (pl) for hl(r) and fixing

R2 > 3C(P 2 ). This proof with the necessary modifications is as follows.

Form N = exp2[n(h1(pl) + 2Y)] sets of x( 1) sequences, say Sl,...,SN,

by selecting sequences independently from Tn (8 ,pl) according to a uniform

. distribution. The selections are made with replacement so that every _i(1 )

sequence is equally likely to be selected each time. This is done until

each set Si contains

ISI exp2 [n(K(pl) - h1 (pl) - y)] (7)

6-typical x(I ) sequences.

A sequence x (1) is encoded into an index i(x ( I) ) defined by

j if j - ink:x(1 ) C Sk)

i(x ( )) - (8)

0 if x ( I ) q Sk ' k = j,...,N

The index i(x ) is then sent to the decoder, requiring a rate

R1 = h1(pl) + 2y. An error will occur if i(x ( I ) ) = 0. Since
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( I ) f T (8,p )) - 0 as n-

we will know

Pti(x (' )) = 01 0 as n

if

Q P ii( I ) = 01 x E T n(,pl) - 0 as n .

Now

N
Q = Px 0 s E T (8,p))

j=1 --

=N 17 p[(1) (1)E (,P)ANT T P ( I) A U_1 x (  E T n(b,,l))

j=l uES.

-p (( )  _U I~ x_( ) E T n(8,pl ))NISI

[ 1i -1 T n(,pl)I 3NISI

1 (-exP 2 [-n C(p1 ) + c)])NISI (9)

since the selections were done independently using a uniform distribution.

Since ln(l-x) u -x, 0 f x < 1, then

ln Q :S NISI ln1 -exp2 [-noC(p, ) +c))

: -NISl exp2 [-nC(pl) + c))

- - exp2 [n(y-c)]. (10)

S.- . .........-.. .
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So in Q" -- and Pti(X( I') = ]- 0 as n- if y > c.

Now P((X 1 ),X(2)) E Jn(6,p)] - 1 as n- w so we may assume that the

source outputs (x( ) ,x (2 )) are jointly 8-typical. The decoder observes

x (2) and knows an index j such that x
(l) E SJ* The decoding procedure is

to search S. for a sequence u such that ( (,x( 2 ) ) E Jn(,p). As an upperJn

bound assume an error occurs if there is some 
sequence u E S, u 0 x (# )

such that (,x ( 2 ) ) E Jn'(,p). Let Ex(2) ) denote this event for a given

(2)x 2 . Then

P[E( 2 ))] (S -1 ) P(U E U(2))A

where

(2) (2 )E3
*(2) u E T n(8,p 1 ) (2) E Jn(8,p))

and U is a random vector uniformly distributed on Tn (,pl). The proba-

bility of error associated with this event is the expectation of

P[E(x (2))] over all 8-typical x ( 2 ) sequences. Denoting this probability

of error by P[E] we have

P[E] < ISI : P{U E 04x(2)3PX(2) = _x
( 2 )

x(2)

f- Slexp[-ng(p2 ) -c)] E PIU E 1((2)].
(2)

! lSlexp[-n((p 2 ) -c)] E t2(l (2))JITn(8,pl)I (1I)

(2)
Bu

But

it i.
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114(_ (2) )1 l iJn 6,P)l
x (2)

so

P[E] £ IS-exp[-nOC(p 2) - c)IJ n(6,p)I ITn(8 , p l ) I

< ISIexp2 fn(C(p) -X(p 1 ) -X(p 2 ) +3c)] (12)

using the bounds on cardinality from Property 2 of the sets of typical

sequences. The constant c is defined in the Preliminaries. Since

ISI = exp2 [nC(pl) -hl(pl) -y)]. (13)

then it follows from (5), (12), and (13) that

P[E] < exp 2l[n(h 1 (p) -hl(pl)+3c-y)]. (14)

Since (6) implies h1 (pl) h1 (p), it follows from (14) that P(E] -. 0 as

n- if

y > 3c . (15)

The constant c may be made arbitrarily small and does not depend on the

distribution p, so any R1 > h(pl) is achievable.

3.3 Converse to Coding Theorem

The rate of any code for source I can be expressed as
n

M E u 1
R - R1 (p) - ( )  n -l 1 P1 (ui)]() (16)

u U i-7
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where A(u) is the length (i.e., number of bits or symbols) of the code-

word for u. This length function depends only on the code, so for a

given code the rate is a function of the marginal distribution p1. All

sources i E A(pl) have the same marginal PI' hence any code has a single

rate RI = Rl(pl) for all of them. By the converse of the Slepian-Wolf

theorem applied to a particular source TT E Al(pl)

R1 (pI) l h1 (T), (17)

and since this applies to all sources in Al(p1 ),

R = R1 (pl) z sup[h 1 (T) :T E Al(p)] - h(p) (18)

which is thedesired result.

)

v-. .. . ... . . .. .. . -... ...- -
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CHAPTER 4

ROBUST CODING FOR THE SIDE INFORMATION PROBLEM

4.1 Statement of Problem and Result

In this problem the output of source 1 must be reproduced with

arbitrarily low distortion by the decoder. Encoder 2 sends information

derived from source 2 at rate R2 and this information is used to determine

the [(I)) but reproduction of the output of source 2 is not required

(see Fig. 3). The solution to this problem is given in terms of an

auxiliary random variable Z. Let the joint distribution of X( I ) , X ( 2 ) and

Z be

q(u,v,w) = Px ( 1 ) = u,X ( 2 ) = v,z = w)

and the joint distribution of X W and Z be

qi(u,v) _ pfx(i) . u,Z = v)

for i = 1,2. Also, define p to be the marginal distribution of Z. In the

case where the joint distribution p of X and X is known precisely by

the encoders and the decoder the rate region is ([21,[31)

= [(R1 ,R2) Z X ( I ) - X (2) Z and R I  hz(q1 ), R2 Z J (q 2 )). (19)

Here X ( 1) * X ( 2) _ Z indicates that these random variables in the order

listed form a Markov chain (i.e, X (I) and Z are conditionally independent

given X (2),

qi(u, v )

h zqi) q logvZ q. (u v)7777U
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(Encoder 1

IDecoder i)

2)

x .Encoder 2

Figure 3. Configuration for the side information problem.
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K (qi ) "X(Pz )  
(20)

is the conditional entropy of X (i ) given Z, and

J(q 2 ) = . q2 (t,v) log q2(u,v)
u, v 2P2(U)Pz(v)

= X(p2 - h z ( q 2 )

is the mutual information between X(2 ) and Z. In all that follows, we

assume only that p E A, that the i-th encoder knows the i-th marginal p,,

and that the decoder knows p.

Since X X() Z, then q(x (1),x (2),z) = p(x (),x (2))w(zlx(2))

and so the auxiliary random variable Z may be specified by a conditional

distribution w where w(ulv) = PfZ = mIX ( 2 ) = v). This conditional distri-

bution is chosen beforehand and is known to the encoders and the decoder.

Notice that ql is obtained from p and w by

qI(x (1)z) = 'X p(X(1),x(2))w(zlx(2)). (21)

x (2)

Under these assumptions the rate region is

= t(RI,R2 ) :Z w 3 RI > hz(pl), R2 Z J(q2)) (22)

where

Rz(pl) A suph z(ql) :r EA 1 (pl)] (23)

and

Al(pl) [ T E A :TTi -P
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Note that hz(pl) is defined for a fixed w, and so ql is a function of n

as indicated in (21) with p replaced by TT.

4.2 Positive Coding Theorem

The proof here is that of Berger ([51, Theorem 5.1) with a few modi-

fications, as in the positive coding theorem for the Slepian-Wolf problem

in section 3.2. Encoder 2 knows P2 and w so it may encode exactly as if

the distributions were known. This is done as follows. Let D be a sub-

set of T n(,p z ) of size

IDI = exP2 [n(J(q2 )+f ( 6 )) ] , (24)

for which the sequences z are chosen from T n(6,pz) according to a uniform

distribution. In (24), f(6) does not depend on p since p(u) >a>0 and

f(8) - 0 as 8 - 0. It can be shown (Lenmma 2.1.3 of [5]) that if x ( 2 ) is

any 6-typical output sequence from source 2, there will be at least -one

z E D such that x ( 2 ) and z are jointly 6-typical w.p. -" I (w.p. -' a will

be used to indicate with probability- e as n c). Let D be such a set.

(2)
If the source output is x , encoder 2 simply sends the smallest index

which corresponds to a z which is in D and has the property that

(2) _w

( ,z) E Jn(6,q 2), and sends index 0 if there is no such z. Then we

have

R = J(q + f(&) (25)

where f(8) - 0 as 6 - 0.
Encoder I first determines h z(pl) using A, PI' and w (see (23)).

Next
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N exp[n(z (pl) + 2y)] (26)

sets of ) sequences, say I ... SN are formed by selecting sequences

independently from T n(6,pl ) according to a uniform distribution, as in

section 3.2. Here each set contains

ISI = exp2 [nC(pl) - hz(pl) - y] (27)

6-typical x(1) sequences. The index i(x(I )) is defined by

i(x(I )) = j if j = minfk :W' E Ski

0 if x (  f Sk ) k= i .... N

and this index is sent to the decoder requiring a rate RI = hz(pl) + 2yo.

With N and ISI as defined in (26) and (27), the derivation of equations

(9) and (10) in section 3.2 holds, showing that Pli(X (I )) = 0) - 0 as

Since PI(1X (2)) E Jn(6,p)) - as n- -o we may assume that the

(1) (2) (1) (2)
source outputs x and x are jointly typical, i.e., (x ,x ) E

J n(6,p). The decoder observes a sequence z jointly 6-typical with x (2)

and knows an index j such that x E S.. Lemma 4.1 of [5] ("Markov
- J

Lemma") states

X X(2) and (X(2 ),z) E Jn (6,q2 ) z (X(1 ),z) E Jn(61I ,ql)

w.p. - 1. The decoding procedure is to search S. for a sequence u such

that (u,z) E J (61,ql), where 61 = 6IZI. The set S. contains such a u

w.p. - 1 by the above lemma. Let be the event that at least one of
I sequences u ES. other than the sequence x (I ) (the actual

the I-I seq(theesactual

• .. .. . ..- . . .. .. . . ' . . . . _ .i. . . . ..- . ._ i . . . ... .
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source output) is 61-typical with z. If an error occurs then either Ez

occurs or else there is no u E S. such that (uz) E j(6lq 1 ). The

latter event has probability 0 asymptotically as we mentioned above, and

the event E has probability upper bounded byz

P(E) (I SI -l)P E UZ). (28)

where U is a random vector which is uniform on T (6 ,p,) and

'z n u ,'  u_) j6~l]

Since U is uniform on Tn(6,pl) we have

P[J E V V Iz ITn(Po)l-1  (203)

By a slight modification of Lemma 2.1.2 of [5] (reversing signs in expres-

sions of the form p(u) + 81VIl and p(u,v) + 61WI 1), or by Lemma 2.1.6

of [11],

IVzI ! exp 2 [n[h z(ql ) + f'(6 1)]. (30)

where f'(I) - 0 as 81-4 0 and f'(81) is not a function of p. From

property 2 of the 8-typical sets

ITn(8,pl01 - 1 S exp2 [-n((p 1)-c)], (31)

so P-U E 4 exP2 [n(hz(ql) -X(pl) + f'(81 ) + c)]. (32)

Substituting (32) into (28) we get

P[EZJ < ISfexp2 [n(h z(ql) -5C(pl) + f' (61) + c)]
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and using (27)

P[Ez] < exp2 [n(h z(ql) -hz(pl) + f'(6 1 ) + c - y)] (33)

: exp2 [n(f'(8 1) + C - Y)I (34)

where (34) follows from the definition of h (pl) So P[Ez] - 0 as n-

if Y > c+ f'(6 1) for any z E D. The constants c and f'(6 1) may be made

arbitrarily small by choice of 6, hence any R1 > z(Pl ) is achievable and

the rate region is as given by (22).

4.3 Converse to Coding Theorem

The converse to this result is exactly the same as for the result of

Chapter 3. Only a single rate is possible for all TT E A (p1 ) and R

h z(q ) for each n (and its associated q1) in the class by the converse to

the side information problem hence R 1 suph z(ql) :TT E A1(pl)) = hz(pl).
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CHAPTER 5

THE WYNER-ZIV PROBLEM

5.1 Introduction

Encoder 2 sends at rate R2 = X(p2), the entropy of source 2, so the

decoder may be assumed to have (X (2)] exactly; therefore only the coding

for source 1 need be considered. It is desired to determine the rate

distortion function R I(D) for source 1; that is, the minimum rate R such

that the decoder can produce an r.v. i(1) which satisfies Efd(X(1),X(1)
X~~~ whcAaife

D. The distortion measure is assumed to be a finite single letter dis-

tortion measure on ZX Z which satisfies d(u,u) = 0 and d(u,v) > 0 for
1 1

u J v (see Fig. 4). Again an auxiliary random variable Z is required,

so let q be the joint distribution of X)X 2  and Z and let qi be the
(i)

joint distribution of X(i),Z induced by q.

If the joint distribution of X and X is known precisely then

the rate distortion function is [4],

(D) = inf (J(q1) - J (q2) : qE Q(D)) (35)

where

Q(D) [q : X(2)_ X(1) Z andaf :%2 ×X -X^1 Efd(X ( 1 ) ,f(X ( 2 ) , z) ) ! D)

(36)

and J(qi) is the mutual information between X( i ) and Z computed using the

distribution qi" Now any auxiliary random variable Z with joint distri-

bution q E Q(D) may be described by a conditional distribution w where

w(u I v) = P(Zf=uxX( ) =v3 since q(x(1 ),X (2), = p(x 1x (2) )w(zlx ( I ) ) by
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4kR D

Figure 4. Configuration for the Wyner-Ziv problem.
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the Markov property. So an alternative description of the rate distortion

function is

R (D) = inf(.J(ql) -,(q 2 ): wE P(p,D)] (37)

where

P(p,D) - (w - Z F(v,z) _ D) (38)
vz

is defined in terms of the function F which is given by

F(v,z) = min(u w(ziu)p(u,v)d(u, ) : iEA] (39)

These descriptions are equivalent for if w E P(p,D) then define the

function f(v,z) = ^* where Zi* is such that

Z [ ( 1)  =u x x( 2 )  fi v, Z =f z) d (u,ti*) =f min( : P[X ( I  f u I x  (2 )  f vZ fiz
I: =fXv, Z z)
u u

d (u,c^) a E Z' (40)

and this f will satisfy E~d(X( 1 ),f(X 2 ,Z))) - D by the definition of

P(p,D). Conversely if q E Q(D) then the corresponding w E P(p,D) because

f as defined by (39) minimizes the contribution of each (v,z) pair (vEZ 2,

z E ;) to the distortion, which minimizes the total distortion.

Now assume that the encoder knows only that p E A and define

W(D) n f P(rr,D) (41)
rrE AI(p)

where
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Al 1 ) = E A : p1]. (42)

Then the set

q- (RID) : R1 a inf[sup(J(ql) -J(q2 ) :TEAl(pl)) :wEW(D)] (43)

is achievable. This is clear since by the definition of W(D) the decoder

can find an r.v. -( w D once it has Z, and the

random coding proof of the Wyner-Ziv result in [5] shows that any R1

J(ql) -J(q2) allows Z to be decoded. For a given w, R, Z sup[J(ql) -

(q 2) :T E A(pl)) so Z may be recovered for any TT E Al(p,) and A is

achievable. However, R does not necessarily contain any point on any of

the R*(D) curves for individual TT E A1 (pl). For any given w, the distri-

bution Tr which achieves the maximum rate need not also have the worst

distortion. So the above result does not establish the existance of

robust codes.

The following example shows that in fact robust codes do not in

general exist for the Wyner-Ziv problem. That is, in general it is not

possible to construct a code for any class of sources which achieves a

point (R,D) on the rate-distortion function R (D) for one of the sources

and distortion no greater than D for the other sources.

5.2 Counter Example for Robust Coding

Here jzi = 2 (i = 1,2). The class A is composed of two pairs of

sources. One has distribution TT given by r(0,0) = rT(l,1) = (l-s) and

n(l,0) = 1((Ol) = The other has distribution r^ which is given by5
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(O,0) =(l-z), 0 (0,l) f  z , t(l,0) = 0 and T(l,l) =. In these

definitions s and z are constants in [0,1]. The distribution n

corresponds to a doubly symmetric binary source (DSBS) and T is defined

by a "Z-channel" between X( ) and X(2 ), a "Z-channel" being one with only

a single possible crossover (Fig. 5). Note that TT = so

A == 1 ( 1 ) = l)

Two different conditional distributions of Z given X( ) are necessary

and these are denoted by w and W^. The distributions rr, 1r, w, and w are

(1) (2)used to define three joint distributions on X ( , X 2 , and Z as below

Aq(u,v,z) =T r(u,v)w(z Iv) (44a)

q'(u,v,z) = (u,v)w(zlv) (44b)

q"l(u,v,z) TUw() (44c)

for u E Z, v E X 2 and z E ;. Joint distributions induced on X and Z

by these distributions are denoted by qi,qj, and q: respectively. For

the conditional distribution w and source T, if q(u,v,z) = r(u,v)w(zlv)

we may define

r(TT,w) -4 J(ql) -.P(q 2) (45)

and

6(n,w) Z minZ q(u,v,z)d(u,u) :U E Zl). (46)
vz

So r(n,w) and 6 (T,w) are the rate and distortion achieved by a source TI

and conditional distribution w.

To achieve a particular point on the rate distortion curve R (D)

for r (the DSBS) the conditional distribution of Z given X( ) must

correspond to a specific binary symmetric channel (BSC) with a fixed
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R (;,w)
..... w) - J' /(r ,w)

r (w,w) 
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I
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Figure 5. Time-sharing performance of three
source-test channel pairs.
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level of time sharing. Any other distribution will do strictly worse.

Examination of the derivation of R (D) for the DSBS in [4] makes this

clear (see Appendix B).

Now fix Ps = .1 (which defines rT) and solve for d , the distortion

at which time sharing begins for source rT. Solving equation (26) of [41

numerically, we find d = .00752 and Rt (d*) = 0.4238. (R (D) is the

Wyner-Ziv rate distortion function for source Tr.) Then let the test

channel w be a BSC with crossover probability d so that 5(n,w) = d*,

the auxiliary r.v. Z must be defined by this test channel and some fixed

level of time sharing. The distortion at rate equal to zero is Ps = .1
* d*

for rr, so RT(D) for D > d is as in Fig. 5. Next find a value s (which

defines T) such that

r(t,w) = r(r,w) . (47)

The value of z satisfying this constraint is .256, and 6(fT,w) = .00472 is

the distortion which results when test channel w is used with source r4.

The distortion for fT at rate equal to zero is Pz= .128 so the time

sharing performance of w and fT is as shown in Fig. 5.

Next we wish to find a test channel w which yields lower distortion

at the same rate for source fT. If we define w(ll0) =P(Z = IX(I ) -0] = .01465

and w(011) = .00465 then 6 (T,w) = .0042 < (fT,w) and r(,,w) = r(ii,w) as

desired. Note that the pair [r(fT,w),8(;,w)] is not necessarily on the

rate distortion curve for fT, but it is an upper bound; that is,

R [ (TT, w) - r , . (48)
TT
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Referring to Fig. 5, we let d. denote the distortion and ri denote

the rate of the point corresponding to the intersection of the (w - n)

curve and the (w -T) curve. Test channel w applied to source fT achieves

distortion d > d. at rate r..
1 I

Let D maxd(u,v) :u E ylV E ^13 and define a conditional

distribution distance d s(W',w") by

d (W',W") Z 1w'(ulv) -w"(ulv)l (49)
5

u'v

Pick 6 > 0 such that d-d. > eD > 0. If a new auxiliary r.v. Z has w'1

as its conditional distribution given X (I ) and w' is such that d s(w,w)>6,

then this r.v. will have distortion strictly greater than di (at rate r.)

when used for source TT (the DSBS) by the proof in Appendix A. Yet if

d (w',w) _ then the distortion achieved for source rr is
5

min E w'(zIu)T (u,x)d(u,v) : v E 1 ) 2> eB i (50)
X'z U

in either case the distortion for one of the two sources [TT,fT^ exceeds

di., hence no single r.v. can achieve distortion _ d. for both sources at

rate r.. This does imply that no robust code exists, as can be seen from

the converse to the Wyner-Ziv result (Section III of [41). If a sequence

of codes of increasing block length n exists which achieves asymptotically

a distortion d. at rate ri for both T and fT then eq. (55) of [41 holds

and so here exists a sequence of random variables (zn).1 < j !5 n]

which satisfy Z n) X( l ) - X( 2) and achieve distortions A(n) such that

-In (n)
lira n E A d i  (51)

n- j= l

-- - - - - --
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(n) (n)
Let w n. be the conditional distribution corresponding to Z n. . By the

proof in Appendix B, the point (ri,di) is achieved for source rr by a

unique conditional distribution w and time-sharing parameter e E [0,11.

(n)
Hence the sequence of conditional distributions wj must approach this

conditional distribution w with a particular level of time sharing.

But this possibility has been eliminated, because w with time sharing

achieves a distortion d > di for source TT. Hence no robust code exists.

5.3 Special Case where Robust Coding is Possible

If the problem is restricted to sets A with the property that there

is one worst source tT* such that 1T*(u,v) = E Tr(u,y) c (vjy) for all T E A,
y jy)

where cT is a conditional distribution, then a robust coding technique

similar to that of the side information case may be obtained. The coding

method in this case is simply to code for the worst source r*. Let 4 be

a joint distribution of X X , and Z such that the distribution of

X ( ) and X (2 ) induced by ^ is n*. Then the (R,D) pairs achieved are

given by

R(D) > inf[J(q1 ) -- (q 2 ) w E W(D)) (52)

where q(u,v,z) = TT(u,v)w(zlu) and

W(D) [w : min[Z q (u,v,z)d(u,u): U^ E Z-] !5 D) (53)

v'z u

Now for any T E A there exists a c such that E TT(u,y)c(vly) Tt*(u,v)y

so J(q 2 ) q ,(2) and J(q -) q ; J(ql) - J(q 2 ) for fixed w (note

that J(q1 ) = J0(ql)). The r.v. Z defined by w may be recovered if

R ; J(ql) - ,J(q2 ) so the decoder may recover Z regardless which n E A

is the true distribution.
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The decoder can derive a function f: X2 x Z- such that

(1),f(2), - D as follows. Given TT* and TT, a c can be derived

satisfying Z rr(u,y)c (vy) =1t*(u,v). Then, using c an r.v. X(2) may be

derived from X( 2 ) such that the joint distribution of X(2 ) and X( l ) is rT*.

Then the decoding function for source rr* will yield the desired result.

Since source n is better than lT* in some sense, this technique may not

yield the minimum distortion, and the actual distortion achieved may be

less than that of the worst source.

The performance of the robust coding can be given for the class

A = [DSBS(6):e E [01$62 3 with Hamming distortion measure 0< 1 :2< . The

source DSBS(e 2 ) is the worst source TT , and its rate distortion function may

be achieved by the coding technique of part IIa of [4]. If the source in

effect is fl then the R *,(D ) curve is achieved. This is the solid

line in Fig. 6. For the sources DSBS(e) with e < 82 there are two cases.

If e > d*, the distortion at which time sharing begins, then the

performance is the same as for DSBS(e 2 ) up to d*, and for D 
> d* the

performance is better, as the distortion at rate zero is e (dotted

curve in Ag. 6). The maximum distortion for any source DSBS(e) is e,

so if e < d* then the performance is given by the dashed curve in Fig. 6.

Similar performance is achieved in the case of the doubly symmetric M-ary
*

source, where tight bounds on R (D) are known [61, as this is also a

totally ordered set.

5.4 Note on Evaluation of the Wyner-Ziv Rpfe Region

One of the difficulties in coding for t, Wyner-Ziv problem is that

explicit formulas for the rate distortion function are known only for

doubly symmetric sources. Even numerical evaluation of the Wyner-Ziv
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R

0 p" d* p 2p D

Figure 6. Ferformance of robust coding for the DSBS.
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rate region is difficult as the constraint

E min(E TT(u,v)w(z ju)d(u, ); S E Il :5_ D (54)

is not in general convex. For example suppose the source is a DSBS(.I)

and consider conditional distributions wl, w2, w3 defined by wl(OjO)

w1 (0O0) = w2 (lll) = .5, w1 (l) 
= w2 (0l0) = 1, and

Wa3(UIV )  [ Wl (UIV ) +w 2(ujvl]

Then the distortion achieved by w1 and w2 is .075, but the distortion

achieved by w3 is .10. So the set of conditional distributions w which

satisfy the constraint (54) with D = .075 is not a convex set.
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CHAPTER 6

ROBUST CODING FOR THE SLEPIAN-WOLF PROBLEM

6.1 Statement of Problem

The problem here is the same as that of Chapter 3 except that encoder

2 is not constrained to use R2 > 3C(p 2). The outputs of both sources must

still be decoded with arbitrarily low probability of error. As before

the joint distribution p is in a class A, and the i-th encoder knows the

i-th marginal pi, and the decoder knows p. The set A.(p.) is defined by

A. (1T E2.:T.
Ai(Pi) = (PEA: 1i=pi]

as before, and we define

A(p) - (rrEA: rri=P; i = 1,2). (55)

6.2 An Outer Bound on the Achievable Rate Region

For a given marginal any code must have a fixed rate. So for each

subset of sources A(p) there will be a single rate pair (R1 ,R2 ). By the

converse to the source coding theorem R1 + R2 Z 3C(TT) for every rrEA. So

if the true distribution for the source is p then R +R 2 sup s (TT): TTEA(p)3.

Defining

i(Pi )  sup(hi(T): TEAi(pi)]

we also know Ri Z hi(pi) where h1 ( ) = (-C( and h2 (T) (r) -(),

by the robust coding result for the corner points of the Slepian-Wolf

region. So an outer bound on the achievable rate region is

_[(R,R2 ): R+R 2 >sup[ (T): TEA(p)],

Ri sup[hir): TTEAi(pi)I, i = 1,2). (56)

[I

__ __ __ __
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Now neither encoder can determine the set A(p), so the i-th encoder

cannot determine its rate Ri from (56). However, since the decoder knows

the joint distribution p, any subset of 9 for which the i-th encoder may

determine R. is achievable by the random coding argument used in Chapter 3.
1.

Note that the set 9 is a function of p, so we actually have a family of sets

9(p) which bound the achievable rate regions for each source pE A.

6.3 Some Sets of Achievable Rates

Three different coding techniques which yield sets of achievable

rates are considered in this section. In the first technique R1 =k and

R2 ' supf () -k :r1 E A2 (p2) , where k is a constant chosen beforehand.

If the source distribution is Tr we must have R1 Zh l(n) so k must satisfy

k > sup~hl(r) TT E A) (57)

Also R2  h2 (p 2 ) so if we define

kl A= C(RI,R 2 ) i R > k,R 2 Z max(h 2 (p2 ),supC(TT)-k :TEA2 (p2 )])3 (58)

where k satisfies (57), then Rkl is a subset of Ti and R. is a function

only of pi so Rkl is achievable. Reversing the roles of the encoders

yields another set Rk2'

Another set of achievable rates is given by time sharing between the

corner points of the Slepian-Wolf region derived in Chapter 3. Let

E [0,11 be the time sharing parameter selected "eforehand and define

RBA (RIR2 :R Z sup [Rl(TT) : TTEAI(PI]

R 2 ;>- sup [R 2 (l-5,T ) Tr E A 2(P2)]" (59)
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where

Ri(PIT) K(ii) + (1-)hi(TT). (60)

The i-th encoder can clearly determine R. so we need only show R C 6.

Note A(p) CA i(p) so if (RI,R 2 ) E R then

R i  supRi(,Tr) :TT E A(p)]

and

R1 +R2  sup[3C(T) :Tr E A(p)].

Also since 0 S 1

RI 1 sup[h i (n ) TT E Ai(Pi)]

and so R8 C R.

A third technique is to choose an ot > 0 ( will represent the ratio

R 2 /RIand define

(r) 1f ; >  (61)

h (P)-h(r

C (p,) -h h 2 () -otherwise

a X (Ti7) -h 2 (TT) +3c( 2 ) -cth 1 (T)

Then
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,R (RI ., R2) :R1  sup[R1(T(r),TT) Tr E A l(Pl))

R sup[R2 (l-0(T),TT) : r E A2 (p 2 )]] (62)

is achievable using the same reasoning as for P, Regions derived from

these two techniques (for all possible a and 0) are sketched in Figure 7.

The sets R and R may be improved in the following way. If one of

the encoders can determine from its marginal that the other encoder is

using a rate higher than necessary it may reduce its own rate. Applied

to RP this yields the set

R 01 (R1 2 R2 ) R1 
> sup[R 1 (0T,) - sup(R 2 (1- , : E A2(rT2)]

+ R2(I-0,TT) :TT E Al(PlA ,

R2  sup(R 2 (l-,rr) : Tr E A2 (p 2 )]1 (63)

Since T E A2 (T 2 ) it is clear that R is at least as good as R. To show

RI C suppose that the source distribution is p. Then

R 1 1 RI(0,p) - suptR2 (l-0,T) :T E A 1 (pl)) + R2 (l-0,p)

and

R2 t sup(R2 (1 - ,T) :rr E A1 (p1)3

so R1 +R 2 t3C(p) and RI C R. The same modification applied to R yields
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R 2 "

RU

(2

supC(r):Tr E A2 (p2 ))

supth 2 ()Tr~ lP)

suph 1 (r : T E A(P)] I (Pl) supK(TT) :Tr E A1 (pl)) RI

sup[h1 (Tr) :TT E A2(P2 )3

Figure 7. Sketch of regions R t and R "

7 7-'
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a set R a which is defined as RI with 0 replaced by P(p), and the

same reasoning shows that it is achievable. Similar sets R2 and R 2 may

be defined switching the roles of the encoders.

An example where R i 0 R and RI R is given in Figure 8. Here A

consists of two sources TT and fr such that T2 - T2 but T, # i. In Figure 8,

n is the true distribution of the source. For this example R 2 ' and

R02 -RB so the imporved sets are not uniformly better, nor are they necessarily

equal. The Slepian-Wolf region for Tr is denoted R*(T) in the figure.

The following example shows that even the union of all of these sets

is not the achievable rate region. Here A = [rr,Tr',n") and these sources

have Slepian-Wolf rate regions as in Figure 9. Note that -i T " 0 i

T 2 = 21 T 2 ", 3( ) < (r '), andX(Tr 2 ) <X(12
''). The various sets

are given in Figure 9 assuming that Tr is in effect. A better set R may

be derived as follows.

If iT. is the observed marginal then the i-th encoder codes as forIi
R6 but using r in place of Ai(Tri). So if 1T is the actual source then

the set i (see Figure 9) is achieved. If iT' is in effect encoder 1 can

determine this and use rate

R R1 (P('),jr') + R2 (P(1'),') -R 2 (0(IT),rr)

-nd the ii' rate region is achieved. If iT" is in effect the encoder 2 does

similarly and the Tr" rate region is achieved. So even the union of these

sets of achievable rate pairs is not the achievable rate region.

I,
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Figure 8. Example where R11 and 1 are strictly better than 6,and,
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2 ' 3C(n2  1U 3C6f' )

I u6 , ..

Figure 9. Example showing that the union of these sets of achievable rates
is not the entire rate region. [Note here R 0a and $i,
i 1,2, Rk, -R(T') and R =(TT").

a. . . . . .-

-,a . . ,
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CHAPTER 7

CONCLUS ION

We have considered a number of problems in source coding for pairs

of correlated discrete memoryless sources for the situation in which the

distribution of the source outputs is not precisely known by the encoders

or the decoder. We have assumed only that the source is in some class.

For problems where decoding with arbitrarily low distortion is required

we showed that universal coding (as defined for single-user problems) is

not generally possible. We defined robust codes as codes which achieve

the the optimum performance for one source in the class and achieve

performance which is no worse (i.e., no larger rate or distortion) for the

other sources in the class. For the side information problem and the

corner point of the Slepian-Wolf region the rate for one of the encoders

does not depend on the class of possible joint distributions. In these two

problems we found that the optimum performance was achieved by robust

coding for a particular subset of the class of sources. A bound was given

for the optimum performance for the Slepian-Woif problem, but the

achievable rate region was not determined.

For each of the above problems the converse to the robust coding

theorem was provided by the converse to the corresponding problem in

which the source distribution is known. That is, the converse is derived

from the fact that the converse for some individual source in the class

(or in some subset of the class as determined by the encoders) requires
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the rate to be at least that of the positive coding theorem for the entire

class. This technique may not be used to prove the converse for the

Wyner-Ziv problem because the counterexample of Section 5.2 shows that

for some classes of sources the optimal performance is strictly worse

than that for all individual sources in the class.

--

I , . . . . . - . . . .. .. - i -V -_ .i .
-

.. .. - - - .. . . . . . . -.. . .
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APPENDIX A

MODIFICATIONS NECESSARY FOR THE PROOFS OF CHAPTERS 3 AND 4

WITHOUT THE ASSUMPTION OF KNOWN MARGINAIS

Here we assume that the i-th encoder has no apriori knowledge of the

i-th marginal Pj and that the decoder has no apriori information on the

joint distribution p. If f and g are real-valued functions defined on

a finite set Z then we define

dm(f,g) = maxtIf(u) - g(u) : uEZ] . (65)

Let T7 represent the space of all discrete memoryless sources with finite

alphabet Z1  X '2 If we define

* D [TTEV7:TT(u,v) > e' for all u,vEZ 1 xZ 2 ) (66)

then for any p E

inf(dm(P,r): r E A < 2e' (67)

For some initial time (i.e., based on an initial block of source output

symbols) the i-th source estimates the marginal p i. Call this estimate rri

This initial time may be chosen such that

P(Ipi(u) -Ti(u)l > e" for some u E Z.] < 6' . (68)

For any e", 8' > 0. From (67) a source p E &P exists such that

dm(Ti, i p) < 21Z i l c ' and so for this p we have

PtIPi(u) (u)I > 6 for some uEZi] < 6' (69)

I.



46

by the triangle inequality where e 4 c" + 21ZIe' and IZi maxfl~il ;

i -1,2). The marginal p i is then used to encode some block of source out-

puts. Assuming that the entire block is in error if is not within e

of p. for all u E X., this introduces a probability of error less than 26'
i 3.

for the coding scheme.

The decoder makes an estimate n of the joint distribution p by

using rates Ri (i), (i-1,2), for some initial time. The decoder then

finds an p E W which is within 2c' of r. This initial time may be chosen

such that

P(jp(u,v) - (u,v) > C for some (u,v) E Z1 xZ 2] < 6' (70)

where e cIZI-1 and 6' and e are defined in (69). As with the marginals

we now assume d (p, ) < C adding a block probability of error of 6'.

The encoders may obtain sets of sequences with properties similar to

those of the T n(,pi) using these estimated marginal distributions as

follows. Let the i-th encoder define u to be typical if

In "1 N(uIl_) - i(u)I < 5ZiI "1 +C (71)

for all u E Z where satisfies J i(u) - pi(U)l < S. Call the set of

such sequences T (6 ). Then from (1) and (71)

Tn(6,Pi C Tn' (6'p i ) (72)
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hence

P[u E Tn '(, i )] I as n- (73)

for any e,6 > 0. Also

Tn (,iC) CT n(6 + 2CIZI,pi) (74)

so

exP 2 [n (3C (pi) -k)] < IT rn' (8 ,pi) I 1 exP2[n (Y (pi) + k)] (75)

where

k = -[6 + 2eJZI]log C (76)

_[81.1- + 2e] Z log ki(u) (77)
U

Note that k may be made arbitrarily small by choice of e, 8, and C'. Here

we use the lower bound on pi(u) provided by (66).

The decoder defines the set J '(6,p) of jointly typical pairs (u,v)n

as those satisfying

in N(u,vI,) - p(u,v)l < 81Xl1 -' -1 + (78)

and so

exp 2 n(O (p) - k)] <J' (6,) <exp[n(W (p) +k)] (79)
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since from (76)

k Z -[81Zl1 +lX21 - jZ' log p(uv) (80)
Uv

Finally define the set

Ai( i ) TT E A :max TTi(u ) -^i(u) <6c]. (81)
U

In coding for the corner point of the Slepian-Wolf region (Chap. 3) these

sets T '(8,k ) and A.(i) may be used and yield the same results in the

limit as € -. 0 (recall A is assumed closed). Note that all information

theoretic quantities are continuous bounded functions of the probability

distributions (here the alphabets are finite) so the use of the estimate

p instead of p to compute them will result in a term added to the required

rates of the form f(e) (where f(e) - 0 as e - 0).

The proofs of the three Lemmas used in Chapter 4 may be easily

modified to hold for the typical sets of this section simply by using (73)

and (75) in place of properties 1 and 2 of Chapter 2. The functions of

6 in (24) and (30) become functions of e and 6 which approach zero as 9

and 6 approach zero. These functions remain independent of p because of

the uniform bound of (66).
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APPENDIX B

PROOF OF THE COUNTER EXAMPLE FOR THE WYNER-ZIV PROBLEM

Here we show that the auxiliary r.v. Z in the Wyner-Ziv problem must

be defined as the output of a BSC with X as input in order for Z to be

optimal for the DSBS. The notation used and equations referred to in this

appendix are from [4].

Referring to equations (42) and (43), if the d are not identicalz

then we have

R x  - I (X;EZ) -I(Y; Z) k 0 X %zG (6 z) > G( E .z d Z)

zEA zEA

since G(d) - h(p0*d) -h(d) is a strictly convex function of d for fixed

P0 E (O, ). By definition,

d = [d(X,X)IZ - z] = PCX # Y(Z)IZ = z)
Az

and Y(z) has range 0,1). If the d are identical (for all z E A) thenz

by the definition of Y(z), A may be divided into two sets A = Cz:Y(z) =i],

i = 0,1, such that all z E A are equivalent in the sense that

PtX = xY = yIZ = z03 = P(X = x,Y = yjZ = zl for all x, y,

if z0 and z E A So for the z E A the channel defining Z is a BSC with

parameter d . The set Ac may be regarded as time sharing since from (36)z

E[d(X,X)IZ E Ac] = P0'

and distortion p0 may be achieved with Rx = 0. Furthermore, the last line

of (40) is exactly the rate required by time sharing between the BSC with

output Y(z) and parameter dz and no channel at all. For equality to hold

in (40), so that the rate for Z is the same as this time sharing, we must

.......
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have
A[H(YIZ = z) -H(XIZ , z)] P[Z z - 0

z E AC

which implies

P[z = zIX -0] = P[Z = zix = 1]

for zE Ac. So for a r.v. Z to achieve the lowest possible rate, no

information about X can be given by the event Z E AC. So the optimal

channel must be a combination of a BSC which is used with some

probability 0, and a channel which gives no information which is used with

probability (1 - 0).

We have shown that a BSC with some level of time sharing must be used

to attain optimal performance. It is easily seen that the parameter of

the BSC and level of time sharing are unique. Up to the point where time

sharing begins no two BSC's will achieve the same rate, since G(d) is

strictly decreasing. G(d) is strictly convex so in the time sharing

region no other BSC with time sharing will do as well as the BSC with cross-

* pover probability d by the definition of d.
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